Добавить
Уведомления

CS-E4740 Gradient Methods

This lecture gives a glimpse on gradient methods that allow to tune or learn model parameters in ML methods. Gradient methods are based on a simple idea: given a current choice for model parameters, try to locally approximate the empirical risk by a linear function which is then minimized to obtain updated model parameters.

12+
15 просмотров
год назад
12+
15 просмотров
год назад

This lecture gives a glimpse on gradient methods that allow to tune or learn model parameters in ML methods. Gradient methods are based on a simple idea: given a current choice for model parameters, try to locally approximate the empirical risk by a linear function which is then minimized to obtain updated model parameters.

, чтобы оставлять комментарии